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On ( k  =:) coherent states for the harmonic oscillator 
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Tilman, BLtiment B.5, B-4000 Liege 1, Belgium 

Received 21 April 1989 

Abstract. A new construction of Perelomov’s generalised coherent states is considered for 
one-dimensional harmonic oscillators admitting the Heisenberg- Weyl group as invariance 
Lie group. Exploiting the Niederer maximal kinematical invariance group for such physical 
systems, we deduce further characteristics on the Heisenberg states through the use of the 
fundamental Perelomov state lk, k )  with k =$. We explicitly get new normalisation factor 
and measure for the Heisenberg generalised coherent states. The real Lie algebras so(2, 1) 
0 h(2), so(2, 1) and h(2) play a prominent role in this study. 

1. Introduction 

The largest kinematical group of the (one-dimensional) quantum harmonic oscillator 
has been determined by Niederer (Niederer 1972, 1973) as the group denoted by 
H0(1) ,  isomorphic to SCHR(1). It can be used in order to construct coherent states 
with maximal symmetry (Beckers and Debergh 1989a) by intensively exploiting its 
content at the level of the corresponding Lie algebras. Recall that to this kinematical 
group corresponds the semidirect sum of two Lie algebras, the so-called Heisenberg- 
Weyl real algebra h(2) and the real orthogonal algebra so(2,l) .  

It is well known that the algebra h(2) as well as the non-compact algebra so(2 , l )  
are fundamental structures for one-dimensional quantum harmonic oscillators. On the 
one hand we immediately learn from elementary quantum mechanics (Cohen- 
Tannoudji er all977, Shankar 1980) the prominent role of h(2) by studying in particular 
the energy spectrum of the harmonic oscillator (and its eigenfunctions). On the other 
hand, if dynamical or kinematical symmetries are explored, the simple algebra so(2, l )  
directly emerges, as quoted by Wybourne (1974) (in the dynamical context) or by 
Niederer (1972, 1973) (in the kinematical context). Notice also that, as pointed out 
simultaneously by Niederer (1972, 1973) and Hagen (1972), the subalgebra so(2, l )  
deals with non-relativistic ‘conformal’ coordinate transformations. The above semi- 
direct sum evidently shows the interdependence of both subalgebras, a very interesting 
property (Niederer 1972, 1973) that we call the ‘Niederer property’. It is also stressed 
by the fact that each generator of so(2 , l )  can be expressed in terms of those of h(2) 
so that all the generators of the semidirect sum are constructed from bosonic annihila- 
tion and creation operators (see (2.2) and (2.3) below). 

Recent results (Beckers and Hussin 1986, Beckers et a1 1987, Dehin and Hussin 
1987) in supersymmetric quantum mechanics having already been published by exploit- 
ing the above ‘Niederer property’; we now want to apply it to coherent states (Klauder 
and Skagerstam 1985) for the harmonic oscillator. Indeed, in such a field, the subalgebra 
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h(2), and evidently the corresponding group, are at the origin of the construction of 
the so-called ordinary coherent states (Glauber 1963, Klauder 1963) while the subal- 
gebra so(2, 1) and its associated orthogonal group are amongst the first Lie structures 
to lead to the so-called generalised coherent states (Barut and Girardello 1971, 
Perelomov 1972, 1977, 1986). 

Here we want to construct a new set of generalised coherent states for the Heisenberg 
group. In fact we want to exploit the ‘Niederer property’ which is particularly useful 
at the level of the algebras associated with the maximal kinematical invariance group. 

Let us first consider the orthogonal subalgebra so(2, 1). It is well known (Wybourne 
1974) that in the context of the harmonic oscillator, the eigenvalue of its Casimir 
operator is k (  k - 1) = -A so that k is either f or i, the value k = { leading to a definite 
positive measure for the Perelomov states (Perelomov 1972, 1977). Secondly, due to 
the interdependence of so(2 , l )  and h(2) through the ‘Niederer property’, let us choose 
the Perelomov fundamental state Ik, k )  with k = a  for studying the set of Heisenberg 
generalised coherent states. Then we will show that from this fundamental state I:, a), 
we get a new set of normalised Heisenberg states insuring the expected overcomplete- 
ness (Klauder and Skagerstam 1985). These states will be characterised by a new 
normalisation factor and a new measure of specific interest in connection with para- 
supersymmetric coherent states (Beckers and Debergh 1989b). 

As a further comment, let us notice that the choice of the ik, k)-state instead of the 
vacuum state 10) is allowed due to the fact that the respective stationary subalgebras 
(Perelomov 1979) are identical. In particular, this can also be illustrated for the other 
value k = a  with the fundamental state la, f )  leading to the expected and well known 
results (Klauder and Skagerstam 1985, Glauber 1963, Klauder 1963, Perelomov 1972, 
1977) as mentioned in (3.17). 

This paper is organised as follows. In section 2, after a few generalities about the 
algebras we are interested in, we will put in evidence the different actions of some 
so(2, 1)- and h(2)-generators on the states we have to consider here. This discussion 
will lead us to recover the s0(2,l)-Perelomov results. Section 3 will be devoted to the 
study of the corresponding states in relation with the Heisenberg algebra h(2). This 
last section will be essentially based on the discovery of the new normalisation factor 
and the new measure for k = $ .  

2. The ( k  =:) context and its implications for so(2,l) 

As already mentioned in section 1, the Heisenberg algebra h(2) has played an important 
role in the first developments on coherent states (Klauder 1963, Glauber 1963, Klauder 
and Skagerstam 1985). It is generated by three operators ( P , ,  P - ,  I )  which satisfy the 
only non-vanishing commutation relation 

[Pi, P-]  = - I .  (2.1) 
Through Niederer’s realisation (Niederer 1972, 1973) of these generators in terms of 
creation ( a t )  and annihilation ( a )  operators, we can write them as 

P- = -ia. (2.2) p _ .  t + -1a 

The generators of so(2, l )  have also been considered by Niederer; they are 

K ,  = -(i/2)(ata’) K -  = (i /2)(aa) KO = f ( a ’ a  +$) (2.3) 

expressed as 
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and satisfy the following commutation relations: 

[KO, K+1= K+ [KO, K - 1 z - K -  [ K + ,  K-]=-2Ko. (2.4) 

The Casimir operator of this simple algebra is given by 

Ki- f [K+K-+  K-K,] (2.5) c s o ( 2 . I )  = 

and is in fact, through our realisation for the harmonic oscillator, identical to -(&)Z 
as expected (Wybourne 1974). The two irreducible representations of s o ( 2 , l )  in the 
discrete series correspond to k = $ and k = a .  If we label the states with k and m (the 
eigenvalue of KO) we know that (Wybourne 1974, Balantekin et a1 1988) 

K,lk, m )  = Fi[(m * k)(m F k * l)]1’21k, m * 1) (2.6) 

(2.7) 
in connection with our choice k = $. Let us now exploit the work of Niederer (1972, 
1973) and simply notice that through the explicit realisation of the generators we are 
considering, we have 

K,lk -4, m )  = Ti[(m * k F  f ) ( m  k*;)]’”lk -f, m * 1 )  

P+ P+ = -2i K+ 

so that it is possible to define consistently with (2.6) and (2.7) the action of the ladder 
operators of h(2) as follows: 

(2.8) 

(2.9) 
Let us now consider the non-compact algebra so(2, 1 ) .  It admits coherent states 

(2.10) 

where a is any complex number such that la1 < 1 (Perelomov 1972, 1977). We have 
to calculate the normalisation factor N so that we can insure the scalar product (a la)  
to be equal to 1 .  By using the explicit action of K+ on the states lk, m ) ,  we get 

P- P- = 2i K- 

P,  I k, m )  = i d (  m k * 1 ) k - f, m i f) 
P,  I k - f , m ) = i d (  m i k 7 f ) ”*I k, m * f). 

which can be seen as displacement states defined by 

la) = N emK+lk,  k) 

(2.11) 

Due to the orthonormalisation of the states I k, m ) ,  the inner product we have to consider 
in order to fix N is thus 

(2.12) 

so that we can conclude that in the case of k = i, we obtain, according to Perelomov 
(1972, 1977), 

j N I 2 = ( l - ~ a ~ 2 ) ~ ’ ~ *  (2.13) 
Now, the second requirement (besides the normalisation) for our states to be coherent 
(Klauder and Skagerstam 1985) is the discovery of a measure p(la12) such that the 
completeness relation is satisfied, i.e. 

Ia)(aIp(la12) d 2 a  = 1 (2.14) I 
where d 2 a  =d(Re a)d( Im a). 
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By combining this relation with (2.11), we are led to 

(2.15) 

This result coincides with Perelomov’s measure when k = i, while we recall there does 
not exist such a well defined measure when k = a  in this so(2, 1) context (Perelomov 
1972, 1977). 

3. The algebra h(2) and its ( k  =I) coherent states 

The Heisenberg algebra is a non-compact, non-semisimple, but solvable and nilpotent 
algebra. This allows us to apply Perelomov’s method (Perelomov 1979) by defining 
our states as 

P q  IP)=N‘ePP+lk, k ) =  N ’  ~ ( P + ) ~ l k ,  k) 
q=o q .  

(3.1) 

where p is any non-vanishing complex number. 

the cases where q is even ( q  = 2s) or odd ( q  = 2s + 1) so that we get 
By considering the different actions (2.8) and (2.9) of P+, we have to distinguish 

where we have replaced k by its chosen value t. By recalling the well known relation 
between gamma functions (Abramowitz and Stegun 1965) 

we can rewrite (3.2) in the form 

In order to calculate the normalisation factor N‘ ,  we again consider the scalar product 
( P I P ) ;  we obviously get 

IN’12=exp(-lP12)(1+IPlZ)-’ (3.5) 
so that we are able to search for the measure p’(IPl’) which satisfies 

j IP)(PIP’(lP12)d2P = 1. (3.6) 

This relation can be put in the form 



On ( k  = $) coherent states for the harmonic oscillator 151 

By once again using (3.3), we have in fact to find p’(Ipl2) such that 

From this relation, we deduce that 

This last series absolutely converges when ( y (  < 1 and has to be analytically continued 
otherwise so that we are able to consider 

(3.10) 

where the hypergeometric function (Abramowitz and Stegun 1965) ’F,(a,  b ;  c; z )  is 
defined by 

T(c) r ( a + n ) r ( b + n )  - z n  
T ( a ) T ( b )  n = O  T ( c + n )  n!’ 

a, b ;  c; z )  = (3.11) 

Through Fourier transforms (Bateman 1954), the measure we are interested in is thus 
given by 

Let us now consider the following change of variables: 

so that the measure becomes 

The last integral is in fact the inverse of a Laplace transform and is equal to (Bateman 
1954) 

2ri(lP12)-1’2 W-l,2,O(IPl2) 

where W+(X)  is the Whittaker function (Abramowitz and Stegun 1965). We finally get 

(3.14) 

Let us mention a few remarks and first notice that the measure (3.14) can also be 

(3.15) 

where the exponential integral EI(IPI’) is proved to satisfy (Abramowitz and Stegun 
1965) 

exp(IP12)El(Ip12)> 1/(1 +IPI’). (3.16) 
As a second remark, let us mention that the parallel study with k = 4 (instead of i) 

is evidently easy to realise but starting with well adapted (2.6)-(2.9). The corresponding 
results would be 

/ N ’ I ’  = exp(-IP12) PYIPI’) = l / r  (3.17) 

k”’) = ( l / n ) ( l +  IP12)IPI-’ exp(lP12/2) W-l,2,O(IPl2). 

expressed as 

p‘(lP12) = ( l / T ) ( l  +lPl’) exP(lP12)El(1P12) 
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according to already known developments (Klauder and Skagerstam 1985, Glauber 
1963, Klauder 1963). It is then easy to show that 

(3.18) 

so that we find once again that the ( k  = $) context is quite different from the usual 
( k  = $) context. 
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